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COBALT(III) KINETICS 

 Frank Walmsley
1 
& Bert D. Chandler 

 

Introduction 

 

Cobalt(III) complexes are excellent oxidizing agents. The standard reduction potential for the one electron 

reduction of Co(H2O)6
3+

 is 1.81 V, which is high enough oxidize water to O2.  CoW12O40
5-

, the ion to be 

studied in this experiment, has a literature standard reduction potential of 1.00 V for the one electron 

reduction to CoW12O40
6-

.
2
  While this potential is considerably less than that of Co(H2O)6

3+
, this 

heteropoly ion is still a strong oxidizing agent. 

 

The first step in an investigation into any reaction mechanism is to study the reaction kinetics.  At a 

minimum, any proposed mechanism MUST agree with the experimentally determined rate law.  A good 

mechanism will also explain changes to the rate or observed rate constant that result from changing 

reaction conditions.  Although it is difficult (or even impossible) to prove a mechanism, any proposed 

mechanism that does not agree with an experimentally determined rate law is either wrong or incomplete. 

 

In this experiment, we will study the reaction of CoW12O40
5-

 with a reducing agent by monitoring the 

concentration of CoW12O40
5-

 with UV-visible spectroscopy.  The rate will be measured as a decrease in 

the concentration of CoW12O40
5-

 over time, -d[CoW12O40
5-

]/dt.  For simplicity, we will designate the 

CoW12O40
5-

 anion simply as Co(III) and the reductant as “R”.  The general redox reaction between the 

heteropolyanion and a reducing agent can be described by the rate law: 
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To simplify our study, we will perform the reaction under pseudo 1
st
 order conditions.  In pseudo 1

st
 order 

kinetics, one of the reactants (in this case the reducing agent) is added in large excess (usually 10 fold 

excess or higher) so that that the concentration of that reactant does not change during the experiment.  

This DOES NOT mean that the reaction rate is unaffected by the concentration of the excess reactant.  

It merely means that we add enough of one reactant so that we don’t have to worry about its concentration 

changing during a specific experiment or rate determination.  We can still change the concentration of the 

excess reactant (move from 10 to 15 fold excess) and see how that change affects the reaction rate and 

observed rate constant. 

 

Because the excess reactant concentration does not change, it is often combined into the observed rate 

constant (kobs) to simplify the rate law: 

       = kobs[Co(III)]
a
  where kobs = krxn[R]

b
              (2) 

Under a given set of conditions, a reaction can have only one reaction order for each reactant.  For 

relatively simple reactions, the reaction order (a or b in equation (1)) will be an integer between 0 and 2.  

This reaction order is often interpreted in terms of the molecularity of the reaction.  In other words, the 

reaction order begins to describe the number of molecules involved in the mechanism at or before the rate 
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determining step.  Fractional reaction orders often indicate that the mechanism is more complicated, or 

that it may involve equilibrium steps.   

 

Equation (1) is a rate law that relates the change in concentration of one of the species (the reaction rate) 

to the concentrations of the reactants. The integrated form of the rate depends on the value of a; that is, on 

the order of the reaction in CoW12O40
5-

.  Integrated forms of simple 0, 1
st
 and 2

nd
 order rate laws are 

compiled in Table 1 below. 

 

Table 1.  Integrated Rate Laws. 

Order Integrated Rate Law Linear Plot  

0 )]([)]([ IIICotkIIICo obst   [Co(III)] vs. t (3) 
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The integrated form of the rate law usually relates the concentration of a reactant at any time ([Co(III)]t) 

to the initial concentration ([Co(III)]o)  of that reactant and the rate constant (kobs).  This relationship 

changes substantially with the reaction order, as can be seen from the variety of integrated rate laws in the 

table.  For simple reactions, the reaction order can be determined by fitting concentration vs. time data to 

one of the three integrated rate laws.  A convenient way to do this is to plot the data from a single kinetics 

experiment (or set of experiments) in the three linear forms and then evaluate which of the three equations 

best describes that data. This is how you will treat your data in this experiment.  Ideally, the plot is linear 

for the entire reaction, but in practice the plot may start deviating from linearity after the reaction is about 

75% complete.  A substantial advantage to using the linear form of the integrated rate law is that the slope 

of the line is equal to kobs. 

 

In this experiment the concentration of the oxidant is determined from the absorbance, A, of the ion at 388 

nm.  The product of the reaction (Co(II)) may also absorb light at this wavelength, and you may need to 

account for this.  To determine if you should correct for the spectrum of the product, you will need to 

know how the absorbance by Co(II) at 388 nm and how that relates to the absorbance by any remaining 

Co(III).  This can be accomplished with the following equation: 
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%C is the percent of reactants that has been converted to products, A is the absorbance of the product 
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(after having an “infinite” time to react, i.e. the spectrum of the final product mixture), and Ao is the initial 

absorption.  This ratio evaluates the relative importance of absorbance due to the reactants and products at 

any time during the reaction.  As you can see from the equation, the error introduced by the product 

spectrum will be smallest at the beginning of the reaction (when mostly reactants are present) and largest 

will be largest towards the end of the reaction (when mostly products are present).  You should evaluate 

the error due to Co(II) each of your experiments (a single kinetics experiment is commonly called a 

“run”).  If the % error is higher than 10% for any kinetic run, you should correct that run the A 

absorbance.  To do this, simply plot (A - A) vs. t rather than A vs. t. 

 

The order of the reaction in reductant (the value of b) can be determined by measuring kobs as a function 

of reductant concentration for a constant concentration of CoW12O40
5-

.  The best way to do this is to 

measure kobs using several concentrations of reductant.  Remember that under pseudo 1
st
 order conditions 

[R] will not substantially change during a single run, but that pseudo 1
st
 order conditions does not imply 

that the reaction is 0 order in [R] under those conditions.  Again, using a linear plot simplifies the data 

treatment and often helps limit the impact of small experimental errors.  Recall from equation 2 that: 

  kobs = krxn[R]
b
                  (8) 

Taking the log of both sides yields: 

  log(kobs)  = log(krxn) + b*log([R])               (9) 

Therefore, a plot of log(kobs) vs. log([R]) should yield a straight line with slope of b, the reaction order in 

reducing agent.  Although the intercept of this line is related to kobs, this is not the best way of determining 

its value.
i
  Once the value for b is determined, each experiment provides a measurement of the rate 

constant.  By simply substituting the values for [R], b, and kobs back into equation 8, krxn can be 

determined for each run.  Averaging all the determined values for krxn gives a much more accurate value 

for the rate constant. 

 

 

Mechanism 

 

Oxidation-reduction reactions of transition metal complexes are typically classified as either inner-sphere 

or outer-sphere.  In the case of the inner-sphere mechanism, the electron is usually transferred along with 

the transfer of an atom or group (e.g. a Cl
-
 ligand).  Outer sphere mechanisms occur by passing one or 

more electrons directly thorough space with no actual “contact” between the electron donor and acceptor.  

In order for this transfer to occur, however, the two reacting species must come into very close proximity.  

In CoW12O40
5-

, the Co(III) is buried inside the tungstate tetrahedral.  This means that Co(III) does not 

have any transferable groups and cannot have any atom or group transferred to it, so we would expect the 

mechanism to be outer-sphere.  

 

                                                 
i
 The line that arises from equation 9 generally has data relatively far from the y intercept.  This means that very 

small errors in the data from the line are amplified when extrapolated to x = 0.  So, even though the value for the 

slope may be very good, there may be large errors in the intercept simply because the data is collected so far from 

the intercept.   
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In the case of an outer-sphere mechanism between two anions, the rate is often dependent on the 

concentration of cations, especially the concentration of alkali metal cations.  The cations facilitate the 

reaction by providing a means to bring the two like-charged anions together to permit electron transfer.  

In order to prevent complications due to cation effects, all the reactions will be run in a solution with a 

large and constant alkali metal ion concentration. 

 

Many reaction rates can also vary with hydronium ion (H
+
 or H3O

+
) concentration.  If the reducing agent 

is a weak acid or the salt of a weak acid, it could be present in both the neutral and anionic forms.  The 

rate of reaction of the CoW12O40
5-

 with each of these will not be the same because of the difference in 

charge.  Thus, if both forms are present, there will be two competing processes that lead to the same 

product.  One way to eliminate this problem is to use a large enough H
+
 concentration so that essentially 

all the reducing agent is present as the neutral molecule. 

      

Systems to be Studied 

In these experiments, the reducing agent will be present in large excess.  The solvent in each case is an 

aqueous solution containing 1 M Na
+
 and, where necessary, added acid in the form of HCl.  It is possible 

to use HCl and NaCl because the experiment is being carried out at room temperature.  At high 

temperatures the CoW12O40
5-

 is a strong enough oxidizing agent to convert Cl
-
 to Cl2.  Thus for high 

temperature studies, a nonoxidizable anion must be used. 

The kinetics of the reaction of CoW12O40
5-

 with several reducing agents have been previously studied, 

including those investigated here.
3-5

  The reaction with SCN
-
 has been shown to be independent of [H

+
] in 

the range 0.10 to 1.00 M.  It was also shown that the reaction mole ratio of SCN
-
 to CoW12O40

5-
 is 1 to 1.

3
  

When oxidized, SCN
-
 forms (SCN)2 which, in the presence of excess SCN

-
, is converted to (SCN)3

-
.  The 

reaction with HNO2 has also been shown to be independent of [H
+
] in the range 0.10 to 1.00 M.  It was 

also shown that the reaction mole ratio of HNO2 to CoW12O40
5-

 is 1 to 2.
4
  A dilute solution of HNO2 is 

produced by dissolving NaNO2 (s) in 0.1 M acid.  When oxidized, HNO2 forms NO3
-
. 

 

Table 2.  Reaction Details of the Two Systems. 

Reducing Agent Starting Material 
Mass of starting 

material 
Solvent 

HNO2 NaNO2 (s) 55 mg 1.0 M NaCl, 0.1 M HCl 

SCN
-
 NaSCN (s) 97 mg 1.0 M NaNO3 
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Procedure 

You will be assigned one of the two systems in Table 2. You will need about 300 mL of the solvent.  

Prepare 100 mL of a CoW12O40
5-

 solution by dissolving 0.35 g of K5CoW12O40
.
20H2O in 100 mL of the 

solvent given. The concentration will be approximately 4 x 10
-4

 M. If there is any insoluble material, filter 

the solution before you use it.  Measure the absorbance at 388 nm; this value should be between 0.30 and 

0.50. If the absorbance is lower, add more solid K5CoW12O40
.
20H2O. If the absorbance is higher, pour 

some of your solution out and add more solvent.  Once you have your final solution ready, collect a full 

spectrum from 350-900 nm. 

 

The actual concentration of CoW12O40
5-

 can be calculated from your absorbance measurement using 

Beer’s law (the molar absorptivity at 388 nm is 1150 L mol
-1

 cm
-1

).  The CoW12O40
5-

 concentration in the 

solution used for each kinetics run will be one-half this value because the solution is diluted with an equal 

volume of the reducing agent solution. 

 

For the system assigned from Table 2, prepare 100 mL or your stock reducing agent solution (use a 100 

mL volumetric flask).  This solution will be the most concentrated solution for your kinetics experiments.  

You will also dilute this solution to prepare the reducing agent solutions or lower concentration (use 25 

mL volumetric flasks and volumetric pipettes).  Dilution directions are in Table 3. The best results will be 

obtained when the other four solutions are approximately evenly spaced through the concentration range 

for your reducing agent.  Be sure to mix the solutions thoroughly before using them. 

 

Table 3. Dilution of Stock Reducing Agent Solution 

______________________________________________ 

Use a 25 mL volumetric flask and volumetric pipets. 

 

Volume of Stock Solution Diluted to 

______________________________________________ 

 20 mL   25 mL 

 15 mL   25 mL 

 10 mL   25 mL 

   5 mL   25 mL 

______________________________________________ 

 

Each of the 5 solutions should be tested a minimum of three times (at least 15 runs total).  Your reference 

solution should contain only your solvent.  For the most concentrated reducing agent sample, monitor the 

absorbance for 6 minutes, printing absorbance measurements every 10 seconds (see spectrometer 

instructions at the end of the experiment).  For all other samples, monitor the absorbance for at least 90 

seconds taking absorbance every 2 seconds.   

 

Before starting a run, autozero the spectrometer with your solvent in the sample holder (cuvette or sipper).  

To prepare a sample, pipette 5 mL of the CoW12O40
5-

 solution into a small beaker.  Pipette 5 mL of the 

reducing agent solution into a second beaker.  Quickly mix the solutions by pouring them back and forth 

between the beakers 3-5 times.  Carefully pour the solution into the cuvette (or sip through the sipper), 
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and begin measurements as soon as possible.  Note that the reaction proceeds quickly and that useful 

measurements generally will be obtained within the first few minutes of mixing.  For runs with the most 

concentrated solution, save the solution not placed in the spectrometer.   At the conclusion of all the 

runs, the reaction should be complete and the solution should be blue.   Measure the absorbance of this 

solution at 388 nm; this is A. The A value should be the same for these runs but you may want to 

measure all three to ensure that you have a reproducible value for A.  Additionally, collect a complete 

spectrum for your A solution from 350-900 nm (this is the spectrum of the Co(II) product). 

 

Reproducibility is important for this experiment!  You will want to examine your runs to make sure 

that each set of runs has similar rates.  To do this, simply subtract the last Absorbance value from the first 

for each run.  If your runs with a given solution are reproducible, this 

change per run should be similar. 

Procedure Summary 

1.  Reaction order for CoW12O40
5-

. 

 a.  use highest concentration of your reducing agent 

 b.  monitor each run for 6 minutes, collecting data every 10 seconds 

 c.  do at least 3 runs  

2.  Reaction order for reducing agent 

 b.  monitor each run for 90 seconds, collecting data every 2 seconds 

 c.  do at least 3 runs per reducing agent concentration (you do not need to repeat the runs from part 

1 above, but will want to plot only the first 90 seconds to be consistent with the other 

experiments) 

 

Calculations  

 Determine the order of the reaction in CoW12O40
5-

.  For this determination, use only your runs at 

high reductant concentration (the longer runs).  Each run will need to be plotted 4 different ways.  For 

convenience, you may plot all three data sets for each type of plot on the same set of axes. 

 Figure 1:  Absorbance vs. time or (A - A) vs. time 

 Figure 2:  0 order integrated rate law plot (with linear fits, line equation, and R or R
2
 values) 

 Figure 3:  1
st
 order integrated rate law plot (with linear fits, line equation, and R or R

2
 values) 

 Figure 4:  2
nd

 order integrated rate law plot (with linear fits, line equation, and R or R
2
 values) 

One of the integrated rate law plots should be very linear – this is most easily evaluated by fitting each 

plot with a line.  The reaction order for Co(III) corresponds to the best fit of the three types of plots; the 

“wrong” plots will show some degree of curvature.   

 

Determine the order of the reaction in reducing agent.  Once you have determined the reaction order 

for Co(III), you can then evaluate all of your kinetic data using appropriate integrated rate law equation.  

As long as all of your kinetic runs are linear using the appropriate rate law plot, it is reasonably safe to 

assume that the reaction order remains constant throughout the concentration range you are studying.  For 

each run, the slope of the best fit line is the kobs value for that run.  You do not need to hand in plots for 

Reproducibility 

is Important! 
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all 15 runs.  Rather, prepare a table showing the average value and standard deviation of kobs at each [R].  

To determine the reaction order in reducing agent, prepare a plot of log kobs vs. log [R] using your average 

value for each kobs.  The slope of this line will be the reaction order in [R] (in most cases this is rounded to 

the nearest whole number when the reaction order is reported). 

 

Determine the rate constant (krxn) The rate constant can now be extracted directly from each 

measurement of kobs by substituting the appropriate values into equation (6) and solving for krxn.  For each 

run, determine the measured value for k; report only the average value for all your kinetic runs and the 

standard deviation.  

 

Discussion Questions 
 

1. Explain what the reaction orders mean in terms of the molecularity of the rate 

determining step, and why this information is important to the mechanism. 

2. This reaction can be understood in terms of an Eigen-Wilkins type mechanism, invoking 

an “encounter complex” intermediate.  Using this general mechanism, derive the rate law 

for this reaction.  Make no assumptions about the relative rates of the steps, other than 

that the first step is a rapid equilibrium (i.e. the equilibrium is always satisfied). 

3. How does this general mechanism simplify into your rate law?  What does this tell you 

about the upper and/or lower limits for the equilibrium constant and the rate constant in 

this reaction?  To neglect a term in the denominator, assume that it must be no more than 

1% of the other terms. 

4. Is this reaction likely to be an inner sphere or outer sphere electron transfer?  Justify your 

choice based on both the nature of the complexes AND the kinetic evidence. 
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Instructions for the Hitachi UV-Vis Spectrophotometer (kinetics experiment) 

 

 

1.  From the MAIN MENU, select the TIME SCAN option. 

2.  The DATA MODE should be set to ABS. 

3.  In the TEST SETUP menu, set the wavelength the value in the lab experiment, the UP 

SCALE and LO SCALE to reasonable values for this experiment, and SCAN TIME to the 

total time for that particular run and solvent (usually 90 s or 240 s). 

4.  The FORWARD key takes you to the TIME SCAN screen. 

5.  Fill the reference cuvette with some of your blank solution (solvent). 

6.  IMMEDIATELY PRIOR TO EACH RUN, AUTOZERO the spectrometer with a cuvette 

filled with your solvent. 

7.  Quickly mix your sample solution, fill your sample cuvette, and insert into the sample 

cuvette holder. 

8.  Press the START key to initiate data collection. 

9.  After the time curve has been completed, the complete curve will be displayed on the screen.  

From the options at the bottom of the screen, select RECALC (option 7), press ENTER, then 

select PRINT DATA (option 2), then the ENTER key.  Now select TIME (option 3) and set 

the time to the value entered in step 3 (in seconds) and press ENTER.  Now select 

INTERVAL (option 4), press ENTER, and set the time interval to the interval between data 

points that you want to print (usually either 2 or 4 s).  Finally {if no one else is printing}, 

select PRINT START (option 1), press ENTER, and your absorbance versus time data will 

print. 

10. After printing the data, use the RESUME key on the printer to remove your data from the 

printer.  The data should be in an absorbance vs. time format with the interval you selected in 

9 as the time difference between points. 

11. Repeat steps 6 through 10 for each kinetics run. 

12. Finally, clean all your cuvettes (sample and reference) with DI water.  Then press the MAIN 

MENU key. 

 

 


